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Abstract
A general expression for thawed semiclassical initial-value representation
propagators has been derived in the multidimensional form. The thawed
Gaussian propagator of Heller and the coherent-state-averaged thawed Gaussian
propagator of Baranger et al (2001 J. Phys. A: Math. Gen. 34 7227) are some
examples of the more general class. The derivation is based on the demand that
the correction operator associated with the semiclassical propagator includes
only cubic and higher-order terms of the averaged potential.

PACS numbers: 03.65.Sq, 02.70.Ss, 03.65.−w

1. Introduction

The term initial-value representation (IVR) for an approximate quantum propagator was
originally coined by Miller [1]. Heller [2] in 1975, suggested an approximate propagator,
of the Gaussian form with time-dependent coefficients, chosen to ensure that the propagator
is exact in the harmonic limit. One version of such thawed Gaussian propagators was studied
by Kay [3], who concluded that it is inferior to the Herman–Kluk [4] semiclassical initial
value representation (SCIVR) propagator. The latter is an improvement of the frozen Gaussian
SCIVR propagator proposed by Heller [5] in 1981.

Thawed Gaussian propagators are the subject of a thorough study presented recently by
Baranger et al [6]. These authors derived an explicit expression for the thawed Gaussian
suggested by Heller as well as a new SCIVR propagator (which we will refer to as the
BEA propagator) in which the classical dynamics takes place on a coherent-state-averaged
Hamiltonian. Baranger et al [6] did not provide a multidimensional generalization of their
thawed Gaussian SCIVR propagators.

In the past few years, Pollak and co-workers [7–11] have shown that SCIVR propagators
obey a time-dependent equation whose form is

ih̄
∂K̂0(t)

∂t
= ĤK̂0(t) + Ĉ(t), K̂0(0) = Î, (1.1)

0305-4470/04/419669+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9669

http://stacks.iop.org/ja/37/9669


9670 E Pollak and S Miret-Artés

where Ĥ is the Hamiltonian operator describing the system, K̂0 the SCIVR propagator and Ĉ

is termed the ‘correction operator’. SCIVR propagators are exact for harmonic systems and
the correction operator vanishes in this limit. In this paper, we will use the known form of
the correction operator to show how it can be used to derive a general class of thawed SCIVR
propagators. The term ‘thawed’ implies that the width parameter appearing in the coherent
states used to form the SCIVR propagator is time-dependent. Instead of starting with the exact
quantum propagator and its representation in terms of coherent state path integrals, we will
use the correction operator as our point of departure.

The main results of this paper are: (i) a multidimensional generalization of the thawed
Gaussian propagators suggested by Baranger et al [6]; (ii) formulation of a generalized class
of thawed SCIVR propagators and (iii) explicit formulae for the multidimensional form of the
general class in terms of the monodromy matrices and the classical action function. The theory
is presented in section 2 and the results are discussed in section 3.

2. Thawed SCIVR propagators

2.1. Preliminaries

We consider an N-dimensional system (with mass-weighted coordinates and momenta),
governed by the Hamiltonian operator

Ĥ = p̂2

2
+ V(q̂), (2.1)

where p̂ and q̂ are N-dimensional vectors of the (mass-weighted) momentum and coordinate
operators, respectively, obeying the commutation relation [q̂i, p̂j] = ih̄δij .

The general form of the SCIVR propagator can be written as

K̂0(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

)
R(p, q, t)e(i/h̄)S(p,q,t)|g(p, q, t)〉〈g(p, q, 0)|. (2.2)

The coordinate representation of the multidimensional Gaussian wavepackets is

〈x|g(p, q, t)〉 =
(

det(�r(p, q, t))

πN

)1/4

e−(1/2)[x−q(t)]T
�(p,q,t)[x−q(t)]+(i/h̄)p(t)·[x−q(t)]. (2.3)

Here, �(p, q, t) is an N ×N-dimensional time- and phase-space-dependent matrix of complex
width parameters. The term ‘thawed’ SCIVR propagator is used to indicate that the width
matrix is time-dependent. The real and imaginary parts of the matrix, denoted by subscripts
‘r’ and ‘i’ (�r(p, q, t), �i(p, q, t)), will be assumed to be symmetric. At time t = 0, the
imaginary part will vanish and the real part will be a constant matrix with only positive
eigenvalues. For the sake of brevity, henceforth we shall use the notation �r(t) and �i(t),
keeping in mind that, in principle, the width matrices may also be dependent on the phase space
variables.

At this point, we define a normalized averaging function f(x − q), which is even with
respect to the argument. The classical analogue of the quantum Hamiltonian of equation (2.1) is

Hcl = p2
q

2
+ V(q). (2.4)
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The averaged form of this classical Hamiltonian is then defined as

H̃cl = p2
q

2
+ Ṽ (q) (2.5)

and Ṽ (q) is given by

Ṽ (q) =
∫ ∞

−∞
dx f(q − x)V(x). (2.6)

The classical (mass-weighted) coordinates and momenta q(t) and p(t) are N-dimensional
vectors of the classically evolved values of the coordinate and momentum, respectively, given
that at time t = 0, q(0) = q and p(0) = p. That is, q(t) and p(t) obey Hamilton’s equations
of motion on the averaged potential

q̇j(t) = ∂H̃cl

∂pj

= pj(t), (2.7)

ṗj(t) = −∂H̃cl

∂qj

= −∂Ṽ [q(t)]

∂qj

, (2.8)

where the dot denotes time differentiation. Note the unitarity property of the Gaussian
wavepackets, i.e.

∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

)
|g(p, q, t)〉〈g(p, q, t)| = Î. (2.9)

The function R(p, q, t) appearing in the SCIVR propagator (equation (2.2)) is termed the
pre-exponential factor that at time t = 0 is unity: R(p, q, 0) = 1. Similarly, the ‘action
function’ S(p, q, t) will vanish at the initial time S(p, q, 0) = 0. These conditions assure that,
at the initial time t = 0, the SCIVR operator reduces to the identity operator, as it should.

2.2. The correction operator

As shown in [11], the ‘correction operator’ has the form

Ĉ(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

)
R(p, q, t)e(i/h̄)S(p,q,t)�V(q̂, t)|g(p, q, t)〉〈g(p, q, 0)| (2.10)

and the potential difference operator �V(q̂, t) is

�V(q̂, t) = ∇Ṽ [q(t)] · (q̂ − q(t)) − V(q̂) − ∂S

∂t
+ pT · p

2
+ ih̄

Ṙ

R
+ ih̄

4

∂ log[det �r(t)]

∂t

− h̄2

2
Tr[�(t)] + h̄2

2
(q̂ − q(t))T�(t)�(t)(q̂ − q(t))

− ih̄

2
(q̂ − q(t))T

[
∂

∂t
�(t)

]
(q̂ − q(t)). (2.11)
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The averaged correction operator is defined as

˜̂
C(t) =

∫ ∞

−∞
dx̂ f(x̂ − q̂)Ĉ(t)

=
∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

)
R(p, q, t)e(i/h̄)S(p,q,t)�̃V (q̂, t)|g(p, q, t)〉〈g(p, q, 0)| (2.12)

and one readily finds that

�̃V (q̂, t) = ∇Ṽ [q(t)] · (q̂ − q(t)) − Ṽ (q̂)−∂S

∂t
+ pT(t) · p(t)

2
+ih̄

Ṙ

R
+ ih̄

4

∂ log[det �r(t)]

∂t

− h̄2

2
Tr[�(t)] + 1

2

〈
(x̂ − q(t))T

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]
(x̂ − q(t))

〉
f

, (2.13)

where the brackets denote averaging with respect to the averaging function f .

2.3. The harmonic expansion

The general philosophy behind deriving thawed SCIVR propagators is to account exactly for
the harmonic terms in the evolution equation. Expanding the averaged potential operator about
the classical time-dependent coordinates:

Ṽ (q̂) = Ṽ (q(t)) + ∇Ṽ [q(t)] · (q̂ − q(t)) + 1

2
(q̂ − q(t))TṼ

′′
(q(t))(q̂ − q(t)) + Ṽ nl(q̂, q(t))

(2.14)

(where Ṽ
′′
(q(t)) is the matrix of the second derivatives of the averaged potential function) and

noting that〈
(x̂ − q(t))T

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]
(x̂ − q(t))

〉
f

= (q̂ − q(t))T

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]

× (q̂ − q(t)) +
∫ ∞

−∞
dy f(y)yT

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]
y (2.15)

allows us to rewrite the averaged potential difference operator appearing in equation (2.13) as
the sum of four terms:

�̃V (q̂, t) =
(

−∂S

∂t
+pT(t) · p(t)

2
− Ṽ (q(t)) + 1

2

∫ ∞

−∞
dy f(y)yT

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]
y
)

+
(

ih̄
Ṙ

R
+ ih̄

4

∂ log[det �r(t)]

∂t
− h̄2

2
Tr[�(t)]

)

+
(

1

2
(q̂ − q(t))T

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t) − Ṽ

′′
(q(t))

]
(q̂ − q(t))

)

+ Ṽ nl(q̂, q(t)). (2.16)
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The thawed propagator is now derived by demanding that the first three terms in equation
(2.16) vanish such that the correction operator is dependent only on the nonharmonic terms
in the averaged potential. This can be effected, since at this point we have three as yet
undetermined objects: the action function S, the prefactor function R and the width matrix
�. Thus, the width matrix is determined by demanding that the third term in the equation
vanishes, i.e.

h̄2�(t)�(t) − ih̄
∂

∂t
�(t) − Ṽ ′′(q(t)) = 0. (2.17)

Using the notation

ι(p(t), q(t)) ≡ 1

2

∫ ∞

−∞
dy f(y)yT

[
h̄2�(t)�(t) − ih̄

∂

∂t
�(t)

]
y = 1

2

∫ ∞

−∞
dy f(y)yTṼ ′′(q(t))y,

(2.18)

demanding that the first term on the rhs of equation (2.16) vanish and noting that, at the initial
time, the thawed SCIVR propagator is the identity operator allow us to determine the action
function as

S(p(t), q(t)) =
∫ t

0
dt′

[
pT(t′) · p(t′)

2
− Ṽ (q(t′)) + ι(p(t′), q(t′))

]
. (2.19)

Finally, demanding that the second term on the rhs of equation (2.16) vanishes determines the
prefactor function as

R(p(t), q(t)) =
(

det �r(0)

det �r(t)

)1/4

exp

(
− ih̄

2

∫ t

0
d t′ Tr[�(t′)]

)
. (2.20)

We have thus derived a generalized class of thawed SCIVR propagators that have the property
that the initial time values of the elements of the width matrix are free parameters.

This generalized class is guaranteed to be exact for harmonic Hamiltonians. To prove this,
we note that, after substituting equations (2.17), (2.19) and (2.20) into equation (2.11), one
finds that the potential difference operator reduces to

�V(q̂, t) = Ṽ [q(t)] + ∇Ṽ [q(t)] · (q̂ − q(t)) + 1

2
(q̂ − q(t))TṼ ′′[q(t)](q̂ − q(t))

− ι(p(t), q(t)) − V(q̂). (2.21)

If the potential is harmonic, then the potential difference operator vanishes, since in this case
one has that Ṽ [q(t)] = V [q(t)] + ι(p(t), q(t)).

2.4. Simplification using the monodromy matrices

In an attempt to simplify the computation of the prefactor appearing in the Herman–Kluk form
for the propagator, Gelabert et al [12] provide a method that can be used also for the solution
of equation (2.16). Using the ansatz

ih̄�(t) = Q̇
t
Q−1

t
(2.22)

and inserting it into equation (2.16), one readily finds that the matrix Q obeys the second-order
differential equation in time:

Q̈
t
+ Ṽ ′′(q(t))Q

t
= 0. (2.23)
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The ansatz of equation (2.22) implies the two boundary conditions Q
0

= I and Q̇
0

= ih̄�(0).
Using the identity [12]

det Q
t
= exp

[∫ t

0
dt′ Tr Q̇

t
Q−1

t

]
= exp

[
ih̄

∫ t

0
dt′ Tr �(t′)

]
, (2.24)

the expression for the prefactor simplifies to

R(p(t), q(t)) =
(

det �r(0)

det �r(t)

)1/4 1√
det Q

t

. (2.25)

The monodromy matrices are defined as

M̃qq = ∂qt(p, q)

∂q
, (2.26)

M̃qp = ∂qt(p, q)

∂p
, (2.27)

M̃pq = ∂pt(p, q)

∂q
, (2.28)

M̃pp = ∂pt(p, q)

∂p
, (2.29)

where the ‘tilde’ notation for the monodromy matrices stresses that the time evolution of
the coordinates and momenta are obtained from the averaged potential energy surface as in
equation (2.8). It is then straightforward to find that the matrix Q

t
can be expressed in terms

of the monodromy matrices as

Q
t
= Mqq + ih̄Mqp�(0), (2.30)

so that from Hamilton’s equations of motion we also have that

Q̇
t
= Mpq + ih̄Mpp�(0), (2.31)

thus completing the formulation of thawed SCIVR propagators.

2.5. Thawed Gaussian propagators

To complete the discussion, we consider two specific cases. The first is the thawed Gaussian
propagator, which is obtained by choosing the averaging function to be

fTG(x − q) = δ(x − q), (2.32)

where the ‘delta’ function is a product of the delta functions for each component separately.
With this choice, the ‘averaged’potential is just the bare potential so that the classical dynamics
is determined by the usual classical Hamiltonian of the system. The ι function (equation (2.18))
vanishes in this case, so that the action function is also the ‘standard’ action function. The
results of the previous subsection reduce to the one-dimensional form of the thawed Gaussian
propagator as derived by Baranger et al [6]. This propagator has been termed thawed Gaussian
owing to the fact that the width matrix is time-dependent—thawed—and the propagator is
defined by coherent states that are Gaussian.
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Baranger et al [6] also derived an SCIVR propagator using a Gaussian averaging function.
Specifically, if one chooses

fBEA(x − q) =
(

det �r(0)

(π)N

)1/2

exp(−(x − q)T�r(0)(x − q)), (2.33)

then one regains what we termed [8] as their BEA propagator. In this case, our ι function
defined in equation (2.18) is readily found to be

ι(p(t), q(t)) = 1
4 Tr[Ṽ ′′(q(t))�r(0)−1]. (2.34)

Substituting this expression into the action function (2.19), one finds, in one dimension, that
our action is identical to the sum of the Baranger et al action and their ι function. More
specifically, Baranger et al have two contribution to their ι function. One is identical to
equation (2.34), whereas the second contribution comes from the second derivative of the
kinetic energy with respect to the momentum. At the same time, in their action term, one has
the averaged Hamiltonian, rather than only the averaged potential as in our equation (2.19). If
the Hamiltonian is quadratic in the momenta, then averaging over the momenta gives a term
that exactly cancels out the momentum contribution to their ι function. A fact that emerges
from all this is that, in one dimension, the resulting propagator as derived here is identical
to the Baranger et al propagator. Finally, we do note that in principle one could choose,
for the averaging function, a width matrix that is not identical to the real part of the width
matrix appearing in the coherent states. This would then be a more general form of the BEA
propagator.

3. Discussion

In this paper, we have derived explicit multidimensional expressions for a general class of
thawed semiclassical IVR propagators. Using an averaging function, f , one obtains an
averaged Hamiltonian, and then all the classical dynamics is carried out on the averaged
Hamiltonian. We then showed that the propagator has the explicit form

K̂f ,0(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

) (
det[Mqq + ih̄Mqp�(0)] det

[
Mpp − i

h̄
Mpq�(0)−1

])−1/4

× e(i/h̄)S(p,q,t)|g(p, q, t)〉〈g(p, q, 0)|. (3.1)

The action function S and the ι function that appears in the action function are given in equations
(2.19) and (2.18), respectively. This generalized form reduces to the multidimensional version
of the thawed Gaussian propagator when the averaging function is chosen to be a ‘delta’function
and reduces to the multidimensional version of the BEA propagator when the averaging
function is a Gaussian with a width matrix identical to the initial time width matrix appearing
in the coherent states.

The associated f averaged correction operator simplifies to

˜̂
C(t) =

∫ ∞

−∞

N∏
j=1

(
dpjdqj

2πh̄

)
Ṽ nl(q̂, q(t))R(p, q, t)e(i/h̄)S(p,q,t)|g(p, q, t)〉〈g(p, q, 0)|, (3.2)

showing explicitly that the transformed correction operator always vanishes for harmonic
systems. In fact, the general class of thawed propagators was defined by demanding that the
correction operator reduces to this simple form. We have also shown in equation (2.21) that
the (untransformed) correction operator vanishes in the harmonic limit.
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There is quite some controversy over the usefulness of thawed propagators. Kay’s early
computations [3] and, more recently, the work of Harabati et al [13] have shown that the
thawed Gaussian propagator rapidly loses its unitarity, whereas the Herman–Kluk propagator
is approximately unitary for rather long time periods. This seems to suggest that the whole
discussion on thawed propagators is just a useless intellectual exercise. On the other hand, in
the HK propagator, the monodromy matrices appear in the prefactor in the numerator. Thus,
when treating a chaotic system, the exponential divergence of classical trajectories creates
an exponent that increases exponentially in time, making any Monte Carlo evaluation of the
propagator very difficult [14]. In the thawed propagators, the monodromy matrices appear in
the denominator so that this rapid growth may not necessarily cause a problem. In this context,
one should also note that, for thawed propagators, one is considering the classical dynamics
on an averaged potential energy surface. This averaging would probably tend to ‘smoothen’
the surface and thus diminish the chaoticity.

As is evident, there is much freedom in the choice of thawed propagators. Both the
averaging function and the initial value of the width matrix appearing in the coherent states are
not defined uniquely. This freedom does imply that further studies are needed to elucidate what
are the optimal width parameters and smoothing functions for different physically interesting
cases. Ultimately, the ‘best’ propagator is the one for which the SCIVR series expansion
discussed extensively in [9–11] converges most rapidly.
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